博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Spark RDD Transformation 简单用例(一)
阅读量:6270 次
发布时间:2019-06-22

本文共 26564 字,大约阅读时间需要 88 分钟。

map(func

/**  * Return a new RDD by applying a function to all elements of this RDD.  */
def map[U: ClassTag](f: T => U): RDD[U] 

 

map(func) Return a new distributed dataset formed by passing each element of the source through a function func

将原RDD中的每一个元素经过func函数映射为一个新的元素形成一个新的RDD。

示例:

其中sc.parallelize第二个参数标识RDD的分区数量

val rdd = sc.parallelize(1 to 9,2)val rdd1=rdd.map(x=>x+1)
scala> val rdd = sc.parallelize(1 to 9,2)rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[3] at parallelize at 
:24scala> rdd.take(20)res3: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9)scala> val rdd1=rdd.map(x=>x+1)rdd1: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[4] at map at
:26scala> rdd1.take(20)res5: Array[Int] = Array(2, 3, 4, 5, 6, 7, 8, 9, 10)

 

filter(func

/**  * Return a new RDD containing only the elements that satisfy a predicate.  */

def filter(f: T => Boolean): RDD[T]

filter(func) Return a new dataset formed by selecting those elements of the source on which func returns true. 

原RDD中通过func函数结果为true的元素转换成一个新的RDD。

val rdd = sc.parallelize(1 to 9,2)val rdd1 = rdd.filter(_>=5)

 

scala> val rdd = sc.parallelize(1 to 9,2)rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[7] at parallelize at 
:24scala> val rdd1 = rdd.filter(_>=5)rdd1: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[8] at filter at
:26scala> rdd1.take(10)res13: Array[Int] = Array(5, 6, 7, 8, 9)

 

flatMap(func)

/**  *  Return a new RDD by first applying a function to all elements of this  *  RDD, and then flattening the results.  */
def flatMap[U: ClassTag](f: T => TraversableOnce[U]): RDD[U]

 

flatMap(func) Similar to map, but each input item can be mapped to 0 or more output items (so func should return a Seq rather than a single item). 

和map类似,但是每一个元素可能被映射为0个或多个元素(func函数应该返回一个Seq,而不是单个的元素);实际上就是先进行map,然后再进行一次平滑(flat)处理。

val rdd = sc.parallelize(1 to 3,2)val rdd1 = rdd.flatMap( _ to 5)
scala> val rdd = sc.parallelize(1 to 3,2)rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[9] at parallelize at 
:24scala> val rdd1 = rdd.flatMap( _ to 5)rdd1: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[10] at flatMap at
:26scala> rdd1.take(100)res14: Array[Int] = Array(1, 2, 3, 4, 5, 2, 3, 4, 5, 3, 4, 5)

 

mapPartitions(func

/**  * Return a new RDD by applying a function to each partition of this RDD.  *  * `preservesPartitioning` indicates whether the input function preserves the partitioner, which  * should be `false` unless this is a pair RDD and the input function doesn't modify the keys.  */ def mapPartitions[U: ClassTag](     f: Iterator[T] => Iterator[U],     preservesPartitioning: Boolean = false): RDD[U]
mapPartitions(func) Similar to map, but runs separately on each partition (block) of the RDD, so func must be of type Iterator<T> => Iterator<U> when running on an RDD of type T. 

和map类似,该函数和map函数类似,只不过映射函数的参数由RDD中的每一个元素变成了RDD中每一个分区的迭代器。如果在映射的过程中需要频繁创建额外的对象,使用mapPartitions要比map高效的过。

计算每一个partition中元素个数

 

def countPartitionEle(it : Iterator[Int]) = {    var result = List[Int]()     var i = 0     while(it.hasNext){       i += 1       it.next     }     result.::(i).iterator//::在列表开头增加元素i,元素i必须用小括号包含,然后创建一个迭代器}val rdd = sc.parallelize(1 to 10, 3)val rdd1 = rdd.mapPartitions(countPartitionEle(_))rdd1.take(10)

 

 

scala> def countPartitionEle(it : Iterator[Int]) = {     | var result = List[Int]()     | var i = 0     | while(it.hasNext){     | i += 1     | it.next     | }     | result.::(i).iterator     | }countPartitionEle: (it: Iterator[Int])Iterator[Int]scala> val rdd = sc.parallelize(1 to 10, 3)rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[6] at parallelize at 
:24scala> val rdd1 = rdd.mapPartitions(countPartitionEle(_))rdd1: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[7] at mapPartitions at
:30scala> rdd1.take(10)res8: Array[Int] = Array(3, 3, 4)

 mapPartitionsWithIndex(func

/**

* Return a new RDD by applying a function to each partition of this RDD, while tracking the index
* of the original partition.
*
* `preservesPartitioning` indicates whether the input function preserves the partitioner, which
* should be `false` unless this is a pair RDD and the input function doesn't modify the keys.
*/
def mapPartitionsWithIndex[U: ClassTag](
f: (Int, Iterator[T]) => Iterator[U],
preservesPartitioning: Boolean = false): RDD[U]

mapPartitionsWithIndex(func) Similar to mapPartitions, but also provides func with an integer value representing the index of the partition, so func must be of type (Int, Iterator<T>) => Iterator<U> when running on an RDD of type T. 

和mapPartitions类似,也是针对每个分区处理,但是func函数需要两个入参,第一个表示partition分区索引,第二个入参表示每个分区的迭代器。

def func(index :Int, it : Iterator[Int]) = {    var result = List[String]()     var i = ""     while(it.hasNext){       i += it.next + ","     }     result.::(i.dropRight(1) + " at partition "+index+".").iterator}val rdd = sc.parallelize(1 to 10, 3)val rdd1 = rdd.mapPartitionsWithIndex((x,it) => func(x,it))rdd1.take(3)
scala> def func(index :Int, it : Iterator[Int]) = {     |     var result = List[String]()     |      var i = ""     |      while(it.hasNext){     |        i += it.next + ","     |      }     |      result.::(i.dropRight(1) + " at partition "+index+".").iterator     | }func: (index: Int, it: Iterator[Int])Iterator[String]scala> val rdd = sc.parallelize(1 to 10, 3)rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[1] at parallelize at 
:24scala> val rdd1 = rdd.mapPartitionsWithIndex((x,it) => func(x,it))rdd1: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[2] at mapPartitionsWithIndex at
:28scala> rdd1.take(3)res2: Array[String] = Array(1,2,3 at partition 0. 4,5,6 at partition 1. 7,8,9,10 at partition 2.)

 

sample(withReplacement, fraction, seed

/**

* Return a sampled subset of this RDD.
*
* @param withReplacement can elements be sampled multiple times (replaced when sampled out)
* @param fraction expected size of the sample as a fraction of this RDD's size
* without replacement: probability that each element is chosen; fraction must be [0, 1]
* with replacement: expected number of times each element is chosen; fraction must be >= 0
* @param seed seed for the random number generator
*/
def sample(
withReplacement: Boolean,
fraction: Double,
seed: Long = Utils.random.nextLong): RDD[T]

sample(withReplacement, fraction, seed) Sample a fraction fraction of the data, with or without replacement, using a given random number generator seed. 

对原RDD进行采样,其中withReplacement表示是否有放回的抽样,fraction表示采样大小是原RDD的百分比,seed表示随机数生成器

scala> val rdd = sc.parallelize(1 to 10, 3)rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[3] at parallelize at 
:24scala> val rdd1 = rdd.sample(true,0.5,0)rdd1: org.apache.spark.rdd.RDD[Int] = PartitionwiseSampledRDD[4] at sample at
:26scala> val rdd2 = rdd.sample(false,0.5,0)rdd2: org.apache.spark.rdd.RDD[Int] = PartitionwiseSampledRDD[5] at sample at
:26scala> rdd1.collectres3: Array[Int] = Array(2)scala> rdd2.collectres4: Array[Int] = Array(1, 2, 4, 5, 6, 9) scala> val rdd1 = rdd.sample(true,0.5,1)rdd1: org.apache.spark.rdd.RDD[Int] = PartitionwiseSampledRDD[7] at sample at
:26scala> rdd1.collectres6: Array[Int] = Array(1, 3, 7, 7, 8, 8, 9, 10)

 

union(otherDataset) 

/**

* Return the union of this RDD and another one. Any identical elements will appear multiple
* times (use `.distinct()` to eliminate them).
*/
def union(other: RDD[T]): RDD[T]

union(otherDataset) Return a new dataset that contains the union of the elements in the source dataset and the argument. 

将两个RDD合并成一个RDD,相同的元素可能出现多次,可以使用distinct去重。

val rdd1 = sc.parallelize(1 to 5,2)val rdd2 = sc.parallelize(1 to 5,3)val rdd3 = sc.parallelize(2 to 8,3)val rdd = rdd1.union(rdd2).union(rdd3)rdd.collectrdd.distinct.collect
scala> val rdd1 = sc.parallelize(1 to 5,2)rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[8] at parallelize at 
:24scala> val rdd2 = sc.parallelize(1 to 5,3)rdd2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[9] at parallelize at
:24scala> val rdd3 = sc.parallelize(2 to 8,3)rdd3: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[10] at parallelize at
:24scala> val rdd = rdd1.union(rdd2).union(rdd3)rdd: org.apache.spark.rdd.RDD[Int] = UnionRDD[12] at union at
:30scala> rdd.collectres7: Array[Int] = Array(1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, 7, 8) scala> rdd.distinct.collectres8: Array[Int] = Array(8, 1, 2, 3, 4, 5, 6, 7)

 

intersection(otherDataset

/**

* Return the intersection of this RDD and another one. The output will not contain any duplicate
* elements, even if the input RDDs did.
*
* Note that this method performs a shuffle internally.
*/
def intersection(other: RDD[T]): RDD[T]

intersection(otherDataset) Return a new RDD that contains the intersection of elements in the source dataset and the argument. 

两个RDD共同的元素组合一个新的RDD

val rdd1 = sc.parallelize(1 to 5,2)val rdd2 = sc.parallelize(4 to 8,3)val rdd = rdd1.intersection(rdd2)rdd.collect
scala> val rdd1 = sc.parallelize(1 to 5,2)rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[16] at parallelize at 
:24scala> val rdd2 = sc.parallelize(4 to 8,3)rdd2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[17] at parallelize at
:24scala> val rdd = rdd1.intersection(rdd2)rdd: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[23] at intersection at
:28scala> rdd.collectres9: Array[Int] = Array(4, 5)

  scala> rdd.partitions.length

  res10: Int = 3

 

/**

* Return the intersection of this RDD and another one. The output will not contain any duplicate
* elements, even if the input RDDs did. Performs a hash partition across the cluster
*
* Note that this method performs a shuffle internally.
*
* @param numPartitions How many partitions to use in the resulting RDD
*/
def intersection(other: RDD[T], numPartitions: Int): RDD[T]

def intersection(other: RDD[T]): RDD[T],numPartitions表示结果RDD的分区数量

scala> val rdd = rdd1.intersection(rdd2,1)rdd: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[41] at intersection at 
:28scala> rdd.partitions.lengthres12: Int = 1

 

/**

* Return the intersection of this RDD and another one. The output will not contain any duplicate
* elements, even if the input RDDs did.
*
* Note that this method performs a shuffle internally.
*
* @param partitioner Partitioner to use for the resulting RDD
*/
def intersection(
other: RDD[T],
partitioner: Partitioner)(implicit ord: Ordering[T] = null): RDD[T]

 

自定义分区

 自定义分区类必须继承Partitioner,方法numPartitions设置分区数量,getPartition获取分区索引。

class MyPartitioner(numParts:Int) extends org.apache.spark.Partitioner{  override def numPartitions: Int = numParts  override def getPartition(key: Any): Int = {    key.toString.toInt%numPartitions  }}

 

val rdd1 = sc.parallelize(1 to 15,2)val rdd2 = sc.parallelize(5 to 25,2)val rdd = rdd1.intersection(rdd2,new MyPartitioner(5))rdd.collectrdd.partitions.lengthdef func(index :Int, it : Iterator[Int]) = {     var result = List[String]()     var i = ""     while(it.hasNext){       i += it.next + ","     }     result.::(i.dropRight(1) + " at partition "+index+".").iterator}val rdd3 = rdd.mapPartitionsWithIndex((x,it) => func(x,it))rdd3.collect

 

scala> val rdd1 = sc.parallelize(1 to 15,2)rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[54] at parallelize at 
:27scala> val rdd2 = sc.parallelize(5 to 25,2)rdd2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[55] at parallelize at
:27scala> val rdd = rdd1.intersection(rdd2,newMyPartitioner(5))
:31: error: not found: value newMyPartitioner val rdd = rdd1.intersection(rdd2,newMyPartitioner(5)) ^scala> val rdd = rdd1.intersection(rdd2,new MyPartitioner(5))rdd: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[61] at intersection at
:32scala> rdd.collectres25: Array[Int] = Array(15, 10, 5, 11, 6, 7, 12, 13, 8, 14, 9)scala> rdd.partitions.lengthres26: Int = 5scala> def func(index :Int, it : Iterator[Int]) = { | var result = List[String]() | var i = "" | while(it.hasNext){ | i += it.next + "," | } | result.::(i.dropRight(1) + " at partition "+index+".").iterator | }func: (index: Int, it: Iterator[Int])Iterator[String]scala> val rdd3 = rdd.mapPartitionsWithIndex((x,it) => func(x,it))rdd3: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[62] at mapPartitionsWithIndex at
:36scala> rdd3.collectres27: Array[String] = Array(15,10,5 at partition 0., 11,6 at partition 1., 7,12 at partition 2., 13,8 at partition 3., 14,9 at partition 4.)

 

distinct([numTasks]) 

distinct([numTasks]) Return a new dataset that contains the distinct elements of the source dataset.

使用原RDD中的元素组成一个没有重复元素的RDD

/**

* Return a new RDD containing the distinct elements in this RDD.
*/
def distinct(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T]

numPartitions表示结果RDD的分区数量

 

val a = Array(1,1,1,2,2,3,4,5)val rdd = sc.parallelize(a,2)rdd.collectval rdd1 = rdd.distinct(1)rdd1.collectrdd1.partitions.length

 

scala> val a = Array(1,1,1,2,2,3,4,5)a: Array[Int] = Array(1, 1, 1, 2, 2, 3, 4, 5)scala> val rdd = sc.parallelize(a)rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[42] at parallelize at 
:26scala> val rdd = sc.parallelize(a,2)rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[43] at parallelize at
:26scala> rdd.collectres13: Array[Int] = Array(1, 1, 1, 2, 2, 3, 4, 5) scala> val rdd1 = rdd.distinct(1)rdd1: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[46] at distinct at
:28scala> rdd1.collectres14: Array[Int] = Array(4, 1, 3, 5, 2)scala> rdd1.partitions.lengthres15: Int = 1

 

/**

* Return a new RDD containing the distinct elements in this RDD.
*/
def distinct(): RDD[T]

distinct(numPartitions: Int),不同的是结果RDD中partition数量依赖父RDD。

scala> val rdd1 = rdd.distinct()rdd1: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[49] at distinct at 
:28scala> rdd1.partitions.lengthres16: Int = 2scala> rdd1.collectres17: Array[Int] = Array(4, 2, 1, 3, 5)

 

keyBy(func)

/**  * Creates tuples of the elements in this RDD by applying `f`.  */ def keyBy[K](f: T => K): RDD[(K, T)]

使用func为RDD每一个元素创建一个key-value对元素

val rdd = sc.parallelize(1 to 9 ,2)val rdd1 = rdd.keyBy(_%3)rdd1.collect

 

scala> val rdd = sc.parallelize(1 to 9 ,2)rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at 
:24scala> val rdd1 = rdd.keyBy(_%3)rdd1: org.apache.spark.rdd.RDD[(Int, Int)] = MapPartitionsRDD[1] at keyBy at
:26scala> rdd1.collectres0: Array[(Int, Int)] = Array((1,1), (2,2), (0,3), (1,4), (2,5), (0,6), (1,7), (2,8), (0,9))

 

/**  * Group the values for each key in the RDD into a single sequence. Hash-partitions the  * resulting RDD with the existing partitioner/parallelism level. The ordering of elements  * within each group is not guaranteed, and may even differ each time the resulting RDD is  * evaluated.  *  * Note: This operation may be very expensive. If you are grouping in order to perform an  * aggregation (such as a sum or average) over each key, using [[PairRDDFunctions.aggregateByKey]]  * or [[PairRDDFunctions.reduceByKey]] will provide much better performance.  */ def groupByKey(): RDD[(K, Iterable[V])]
val rdd = sc.parallelize(1 to 9 ,2)val rdd1 = rdd.keyBy(_%3)val rdd2 = rdd1.groupByKey()rdd2.collect

 

scala> val rdd = sc.parallelize(1 to 9 ,2)rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[2] at parallelize at 
:24scala> val rdd1 = rdd.keyBy(_%3)rdd1: org.apache.spark.rdd.RDD[(Int, Int)] = MapPartitionsRDD[3] at keyBy at
:26scala> val rdd2 = rdd1.groupByKey()rdd2: org.apache.spark.rdd.RDD[(Int, Iterable[Int])] = ShuffledRDD[4] at groupByKey at
:28scala> rdd2.collectres1: Array[(Int, Iterable[Int])] = Array((0,CompactBuffer(3, 6, 9)), (2,CompactBuffer(2, 5, 8)), (1,CompactBuffer(1, 4, 7)))

 

/**  * Group the values for each key in the RDD into a single sequence. Hash-partitions the  * resulting RDD with into `numPartitions` partitions. The ordering of elements within  * each group is not guaranteed, and may even differ each time the resulting RDD is evaluated.  *  * Note: This operation may be very expensive. If you are grouping in order to perform an  * aggregation (such as a sum or average) over each key, using [[PairRDDFunctions.aggregateByKey]]  * or [[PairRDDFunctions.reduceByKey]] will provide much better performance.  *  * Note: As currently implemented, groupByKey must be able to hold all the key-value pairs for any  * key in memory. If a key has too many values, it can result in an [[OutOfMemoryError]].  */ def groupByKey(numPartitions: Int): RDD[(K, Iterable[V])] 同groupByKey(),只是指定了分区数量。
scala> val rdd = sc.parallelize(1 to 9 ,2)rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[5] at parallelize at 
:24scala> val rdd1 = rdd.keyBy(_%3)rdd1: org.apache.spark.rdd.RDD[(Int, Int)] = MapPartitionsRDD[6] at keyBy at
:26scala> val rdd2 = rdd1.groupByKey(3)rdd2: org.apache.spark.rdd.RDD[(Int, Iterable[Int])] = ShuffledRDD[7] at groupByKey at
:28scala> rdd2.partitions.lengthres2: Int = 3

 

/**  * Group the values for each key in the RDD into a single sequence. Allows controlling the  * partitioning of the resulting key-value pair RDD by passing a Partitioner.  * The ordering of elements within each group is not guaranteed, and may even differ  * each time the resulting RDD is evaluated.  *  * Note: This operation may be very expensive. If you are grouping in order to perform an  * aggregation (such as a sum or average) over each key, using [[PairRDDFunctions.aggregateByKey]]  * or [[PairRDDFunctions.reduceByKey]] will provide much better performance.  *  * Note: As currently implemented, groupByKey must be able to hold all the key-value pairs for any  * key in memory. If a key has too many values, it can result in an [[OutOfMemoryError]].  */ def groupByKey(partitioner: Partitioner): RDD[(K, Iterable[V])]
class MyPartitioner(numParts:Int) extends org.apache.spark.Partitioner{  override def numPartitions: Int = numParts  override def getPartition(key: Any): Int = {    key.toString.toInt%numPartitions  }}val rdd = sc.parallelize(1 to 9 ,2)val rdd1 = rdd.keyBy(_%3)rdd1.collectval rdd2 = rdd1.groupByKey(new MyPartitioner(2))rdd2.collect
 
scala> class MyPartitioner(numParts:Int) extends org.apache.spark.Partitioner{     |   override def numPartitions: Int = numParts     |   override def getPartition(key: Any): Int = {     |     key.toString.toInt%numPartitions     |   }     | }defined class MyPartitionerscala> val rdd = sc.parallelize(1 to 9 ,2)rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[8] at parallelize at 
:24scala> val rdd1 = rdd.keyBy(_%3)rdd1: org.apache.spark.rdd.RDD[(Int, Int)] = MapPartitionsRDD[9] at keyBy at
:26scala> val rdd2 = rdd1.groupByKey(new MyPartitioner(2))rdd2: org.apache.spark.rdd.RDD[(Int, Iterable[Int])] = ShuffledRDD[10] at groupByKey at
:29scala> rdd2.collectres3: Array[(Int, Iterable[Int])] = Array((0,CompactBuffer(3, 6, 9)), (2,CompactBuffer(2, 5, 8)), (1,CompactBuffer(1, 4, 7)))scala> rdd1.collectres4: Array[(Int, Int)] = Array((1,1), (2,2), (0,3), (1,4), (2,5), (0,6), (1,7), (2,8), (0,9))scala> rdd2.partitions.lengthres5: Int = 2
 

groupBy(func)

/**

* Return an RDD of grouped items. Each group consists of a key and a sequence of elements
* mapping to that key. The ordering of elements within each group is not guaranteed, and
* may even differ each time the resulting RDD is evaluated.
*
* Note: This operation may be very expensive. If you are grouping in order to perform an
* aggregation (such as a sum or average) over each key, using [[PairRDDFunctions.aggregateByKey]]
* or [[PairRDDFunctions.reduceByKey]] will provide much better performance.
*/
def groupBy[K](f: T => K)(implicit kt: ClassTag[K]): RDD[(K, Iterable[T])]

def func(x:Int) = {x%3}val rdd = sc.parallelize(1 to 10,2)val rdd1 = rdd.groupBy(func(_))rdd1.collect
scala> def func(x:Int) = {x%3}func: (x: Int)Intscala> val rdd = sc.parallelize(1 to 10,2)rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[64] at parallelize at 
:27scala> val rdd1 = rdd.groupBy(func(_))rdd1: org.apache.spark.rdd.RDD[(Int, Iterable[Int])] = ShuffledRDD[66] at groupBy at
:31scala> rdd1.collectres29: Array[(Int, Iterable[Int])] = Array((0,CompactBuffer(3, 6, 9)), (2,CompactBuffer(2, 5, 8)), (1,CompactBuffer(1, 4, 7, 10)))

 

/**  * Return an RDD of grouped elements. Each group consists of a key and a sequence of elements  * mapping to that key. The ordering of elements within each group is not guaranteed, and  * may even differ each time the resulting RDD is evaluated.  *  * Note: This operation may be very expensive. If you are grouping in order to perform an  * aggregation (such as a sum or average) over each key, using [[PairRDDFunctions.aggregateByKey]]  * or [[PairRDDFunctions.reduceByKey]] will provide much better performance.  */ def groupBy[K](     f: T => K,     numPartitions: Int)(implicit kt: ClassTag[K]): RDD[(K, Iterable[T])]

同groupBy[K](f: T => K),只是指定了分区数量。

def func(x:Int) = {x%3}val rdd = sc.parallelize(1 to 10,2)val rdd1 = rdd.groupBy(func(_),3)rdd1.collect

 

scala> def func(x:Int) = {x%3}func: (x: Int)Intscala> val rdd = sc.parallelize(1 to 10,2)rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[11] at parallelize at 
:24scala> val rdd1 = rdd.groupBy(func(_),3)rdd1: org.apache.spark.rdd.RDD[(Int, Iterable[Int])] = ShuffledRDD[13] at groupBy at
:28scala> rdd1.partitions.lengthres6: Int = 3scala> rdd1.collectres7: Array[(Int, Iterable[Int])] = Array((0,CompactBuffer(3, 6, 9)), (1,CompactBuffer(1, 4, 7, 10)), (2,CompactBuffer(2, 5, 8)))

 

/**  * Return an RDD of grouped items. Each group consists of a key and a sequence of elements  * mapping to that key. The ordering of elements within each group is not guaranteed, and  * may even differ each time the resulting RDD is evaluated.  *  * Note: This operation may be very expensive. If you are grouping in order to perform an  * aggregation (such as a sum or average) over each key, using [[PairRDDFunctions.aggregateByKey]]  * or [[PairRDDFunctions.reduceByKey]] will provide much better performance.  */ def groupBy[K](f: T => K, p: Partitioner)(implicit kt: ClassTag[K], ord: Ordering[K] = null)     : RDD[(K, Iterable[T])]
class MyPartitioner(numParts:Int) extends org.apache.spark.Partitioner{  override def numPartitions: Int = numParts  override def getPartition(key: Any): Int = {    key.toString.toInt%numPartitions  }}def func(x:Int) = {x%3}val rdd = sc.parallelize(1 to 10,2)val rdd1 = rdd.groupBy(func(_),new MyPartitioner(3))rdd1.collectrdd1.partitions.length

 

scala> class MyPartitioner(numParts:Int) extends org.apache.spark.Partitioner{     |   override def numPartitions: Int = numParts     |   override def getPartition(key: Any): Int = {     |     key.toString.toInt%numPartitions     |   }     | }defined class MyPartitionerscala> def func(x:Int) = {x%3}func: (x: Int)Intscala> val rdd = sc.parallelize(1 to 10,2)rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[14] at parallelize at 
:24scala> val rdd1 = rdd.groupBy(func(_),new MyPartitioner(3))rdd1: org.apache.spark.rdd.RDD[(Int, Iterable[Int])] = ShuffledRDD[16] at groupBy at
:29scala> rdd1.collectres8: Array[(Int, Iterable[Int])] = Array((0,CompactBuffer(3, 6, 9)), (1,CompactBuffer(1, 4, 7, 10)), (2,CompactBuffer(2, 5, 8)))scala> rdd1.partitions.lengthres9: Int = 3

 

reduceByKey(func, [numTasks])

reduceByKey(func, [numTasks]) When called on a dataset of (K, V) pairs, returns a dataset of (K, V) pairs where the values for each key are aggregated using the given reduce function func, which must be of type (V,V) => V. Like in groupByKey, the number of reduce tasks is configurable through an optional second argument. 
对每一个key的所有value使用func函数进行聚合 /**  * Merge the values for each key using an associative and commutative reduce function. This will  * also perform the merging locally on each mapper before sending results to a reducer, similarly  * to a "combiner" in MapReduce. Output will be hash-partitioned with the existing partitioner/  * parallelism level.  */ def reduceByKey(func: (V, V) => V): RDD[(K, V)]
val words = Array("one", "two", "two", "three", "three", "three")val rdd = sc.parallelize(words).map(word => (word, 1))val rdd1 = rdd.reduceByKey(_ + _)rdd1.collect

 

scala> val words = Array("one", "two", "two", "three", "three", "three")  words: Array[String] = Array(one, two, two, three, three, three)scala> val rdd = sc.parallelize(words).map(word => (word, 1))  rdd: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[18] at map at 
:26scala> val rdd1 = rdd.reduceByKey(_ + _) rdd1: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[19] at reduceByKey at
:28scala> rdd1.collectres10: Array[(String, Int)] = Array((two,2), (one,1), (three,3))

 

/**  * Merge the values for each key using an associative and commutative reduce function. This will  * also perform the merging locally on each mapper before sending results to a reducer, similarly  * to a "combiner" in MapReduce. Output will be hash-partitioned with numPartitions partitions.  */ def reduceByKey(func: (V, V) => V, numPartitions: Int): RDD[(K, V)] 同上,只是指定了分区数量
scala> val rdd2 = rdd.reduceByKey(_ + _,3) rdd2: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[20] at reduceByKey at 
:28scala> rdd2.collectres11: Array[(String, Int)] = Array((two,2), (one,1), (three,3)) scala> rdd2.partitions.lengthres12: Int = 3
 
/**  * Merge the values for each key using an associative and commutative reduce function. This will  * also perform the merging locally on each mapper before sending results to a reducer, similarly  * to a "combiner" in MapReduce.  */ def reduceByKey(partitioner: Partitioner, func: (V, V) => V): RDD[(K, V)]
同上,使用partitioner自定义分区
 

 

转载于:https://www.cnblogs.com/alianbog/p/5828935.html

你可能感兴趣的文章
RPF(Reverse Path Forwarding 反向路径转发)技术
查看>>
2016年收到的第一件礼物,被评上微软全球最有价值专家MVP(一)
查看>>
2016中国VR开发者论坛第一期
查看>>
Hyper-V 2016 系列教程5 Hyper-V 服务器基本属性
查看>>
北京、天津工厂自动监测数据爬取
查看>>
第一个python程序简单加法计算器
查看>>
在CentOS下安装Tomcat8
查看>>
Weblogic classloader分析
查看>>
做技术做软件-----如何才能拿到上万的月薪
查看>>
linux 查看当前路径命令:pwd
查看>>
At.js – 用于 Web 应用程序的自动完成库
查看>>
[Android Pro] Android权限设置android.permission完整列表
查看>>
如何对抗硬件断点--- 调试寄存器
查看>>
mybatis学习
查看>>
从不同层面看cocos2d-x
查看>>
Struts2技术详解
查看>>
MFC应用程序向导生成的文件
查看>>
Oracle体系结构之oracle密码文件管理
查看>>
【leetcode】Remove Element (easy)
查看>>
mysql多表查询及其 group by 组内排序
查看>>